Thursday, October 31, 2013

For those who look up at the stars...........

The New York Times


October 30, 2013

Astronomers Find Earthlike Planet, but It’s Infernally Hot


Kepler 78b, a planet some 400 light-years away, is like hell on earth.
Astronomers described it on Wednesday as the first Earth-size planet that seems to be made of the same mixture of rock and iron as Earth, and that orbits a star similar to our sun.
But Kepler 78b would not be a pleasant place to visit. It whirls around its parent star, Kepler 78, at a distance of less than a million miles, and its year — the time it takes to complete one orbit — is just eight and a half hours. (By contrast, Earth is 93 million miles from the sun and, of course, completes its yearly orbit in a little over 365 days.)
At that close proximity, the surface of Kepler 78b is infernally hot: 3,500 to 5,000 degrees Fahrenheit, or “well above the temperature where rock melts,” said Andrew W. Howard, an astronomer at the University of Hawaii and the lead author of one of two papers being published in the journal Nature. “This is probably one of the most hellish planets that have been discovered yet.”
Viewed from the surface of Kepler 78b, its star would cover 80 times more of the sky than the sun does in Earth’s sky.
“It’s certainly not a habitable planet,” said Francesco Pepe, a professor of astronomy at the University of Geneva and the lead author of the other Nature paper.
Kepler 78b is the newest addition to the pantheon of oddball planets in the Milky Way. The first planet discovered around another sunlike star turned out to be about the size of Jupiter, but orbiting its star at what seemed to be an impossibly close orbit. Other discoveries over the years include a fluffy planet with a density less than that of cork and a planet blacker than coal.
“Exoplanets are just surprising us with their diversity,” said Dimitar D. Sasselov, a professor of astronomy at Harvard and a member of Dr. Pepe’s team, using the name for planets outside our solar system.
Kepler 78b is one of more than 150 planets spotted by NASA’s Kepler spacecraft, which noted the dimming of the starlight when a planet passed in front.
Those findings were published in August. But while Kepler can determine exoplanets’ size and orbit, it cannot measure their mass. For that, two teams of astronomers looked at Kepler 78b star from Earth. Dr. Howard’s team used the Keck 1 telescope in Hawaii; Dr. Pepe’s team used a telescope in the Canary Islands. They could not directly see the planet, but they could spot undulations in the frequency of light from the star caused by the gravitational pull of the planet. The heavier the planet, the larger the swings in frequency.
The teams coordinated their work, agreeing to publish their results at the same time, but they did not collaborate. They decided that they would not exchange their data and answers until their papers were almost complete so that each would serve as an independent check on the other.
In the end, the two teams came up with nearly identical answers. The density of Kepler 78b is 0.2 pounds per cubic inch, the same as Earth’s, suggesting that the two planets’ makeup is very similar — an iron core with rocky, if melted, outer layers.
“It’s the first really well measured Earthlike composition for a rocky extrasolar planet,” said L. Drake Deming, a professor of astronomy at the University of Maryland who was not a member of either team but wrote an accompanying commentary for Nature. That astronomers have already found an Earthlike planet suggests that there should be others in cooler, more life-friendly orbits. “You can reasonably conclude from that that it’s not rare, because you’ve found it pretty easily,” he said.
That still leaves a mystery: how Kepler 78b got where it is. “Right now, we have no clue,” Dr. Sasselov said.
It could not have formed there, because the star as a youngster would have extended into its orbit. A near-miss with another planet could have flung it toward the star, but in that case its orbit would have been elliptical, not circular. Or it was nudged inward by the material that formed the planets.
Another possibility is that it was originally a gas giant like Saturn and that as the planet spiraled in toward the star, all of the gases were stripped away, leaving just the rocky core at the center.
“Right now, this scenario doesn’t work, either,” Dr. Sasselov said. “If you want me to choose out of four bad ones, that’s probably the one which seems least so.”

This reminds me of the cottonwood star story.......

The Secret of the Star…..

Some Native Americans believe all things
come from Mother Earth.

 They believe that stars form in the earth and, when ready,
 search for the roots of the magical cottonwood trees.

They finally come to rest in the small twigs
at the end of the cottonwood branches.

Here, they wait.................until they are needed.

When the Spirit of the Night Sky decides that she needs more twinkling, beautiful stars, she calls on
the Wind Spirit to shake all the cottonwood trees.

The Wind Spirit blows and blows, and, as the cottonwood twigs break off, the twinkling stars are released and race up to a special place in the Night Sky.

If YOU want to add a new star to the night sky, find some cottonwood twigs, wait for a clear night,
and hold up your twigs to the sky –
and SNAP!  

Then, look up into the night sky again.

Can you see YOUR star twinkling?

Imagine

You have added a beautiful new star to the
                    kingdom of the night sky......






John Paull



MORE IN SPACE & COSMOS (4 OF 14 ARTICLES)

Balloon Ride to Offer Expansive View, for a Price



No comments: